
Journal of Computational Physics 203 (2005) 72–88

www.elsevier.com/locate/jcp
Generalized integrating factor methods for stiff PDEs q

S. Krogstad

Department of Computer Science, University of Bergen, N-5020, Norway

Received 5 August 2003; received in revised form 9 August 2004; accepted 9 August 2004

Available online 15 September 2004
Abstract

The integrating factor (IF) method for numerical integration of stiff nonlinear PDEs has the disadvantage of pro-

ducing large error coefficients when the linear term has large norm. We propose a generalization of the IF method,

and in particular construct multistep-type methods with several orders of magnitude improved accuracy. We also con-

sider exponential time differencing (ETD) methods, and point out connections with a particular application of the com-

mutator-free Lie group methods. We present a new fourth order ETDRK method with improved accuracy. The

methods considered are compared in several numerical examples.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider high order numerical methods for partial differential equations of the form
0021-9
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ut ¼ LuþNðu; tÞ; ð1Þ

where L and N are linear and nonlinear operators, respectively. Many interesting equations can be put in
this form, where typically L represents the stiff part of the equation. When discretizing the spatial part of

(1), one obtains an ODE on Rn of the form
u0ðtÞ ¼ Luþ Nðu; tÞ; ð2Þ
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where N : Rn � R ! Rn, and L can be represented by an n · n matrix. Explicit methods for solving ODEs

typically match the first few terms of a Taylor series of the true solution, but for ODEs of the form (2) with

large iLi, such methods lead to prohibitive small time steps or instabilities. Numerous high-order ap-

proaches (both explicit and implicit) for solving equations of the form (2) exists, and in a recent paper Kas-

sam and Trefethen [14] compare various fourth order methods, including linear implicit, splitting methods,
integrating factor (IF) and exponential time differencing (ETD). They conclude that the best by a clear mar-

gin is a modification of the so-called ETDRK4 (exponential time differencing fourth-order Runge–Kutta)

method. The ETDRK4 method was developed by Cox and Matthews [4], among general formulas for

ETD-schemes of arbitrary order (also called ELP-schemes [1]). In this paper we will discuss the construc-

tion of ETDRK-schemes and point out connections with commutator-free Lie group methods. In partic-

ular, we construct a fourth order ETDRK-scheme with improved accuracy compared to the one

proposed in [4]. We will also study IF related methods in a general setting, and obtain schemes with huge

improvements in accuracy compared to the standard approach.
Consider the ODE (2) with initial conditions u(t0) = u0. A key idea we use for the ETD methods treated

in this paper is that if we replace the nonlinear term by an approximating finite polynomial in time, then the

resulting ODE can be solved exactly. For starters, assume the nonlinear term is a finite polynomial, that is
Nðuðt0 þ hÞ; t0 þ hÞ ¼
Xm�1

k¼0

hk

k!
Nk; ð3Þ
where Nk 2 Rn; k ¼ 0; 1; . . . ;m� 1. Let exp denote the matrix exponential. By the variation-of-constants

formula, the solution of the ODE is given as
uðt0 þ hÞ ¼ expðhLÞu0 þ
Z h

0

expððh� sÞLÞ
Xm�1

k¼0

sk

k!
Nk ds ¼ expðhLÞu0 þ

Xm
k¼1

hk/kðhLÞNk�1; ð4Þ
where for k = 1,2,. . .,m, we have
/kðhLÞ ¼
1

hk

Z h

0

sk�1

ðk � 1Þ! expððh� sÞLÞ ds: ð5Þ
Integration by parts on (5) gives the the recurrence relation ðhLÞ/kðhLÞ ¼ /k�1ðhLÞ � 1
ðk�1Þ! where /0: = exp.

Thus the /k are analytic functions which for x 2 C are given
/kðxÞ ¼
/k�1ðxÞ � 1

ðk�1Þ!

x
¼ 1

k!
þ x
ðk þ 1Þ!þ

x2

ðk þ 2Þ!þ � � � : ð6Þ
As a motivation for using the series (4) rather than an ordinary Taylor series, we make the following obser-

vation for the ODE (2) when the nonlinear term only depends on time.

Lemma 1.1. Consider the following ODE on Rn,
u0ðtÞ ¼ LuðtÞ þ NðtÞ; uðt0Þ ¼ u0; ð7Þ

where N : R ! Rn is m times differentiable in some sufficiently large neighborhood around t = t0. Denote

N(k)(t) = (dk/dtk)N(t). Then u(t0 + h) admits the expansion
uðt0 þ hÞ ¼ expðhLÞu0 þ
Xm
k¼1

hk/kðhLÞN ðk�1Þðt0Þ þ RmðhÞ; ð8Þ
where
RmðhÞ ¼
Z h

0

ðh� sÞm/mððh� sÞLÞN ðmÞðt0 þ sÞ ds: ð9Þ
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Proof. We prove the lemma by integration of the expression for Rm(h). To make this straightforward, we

first observe that for /0: = exp and k = 1,2,. . .,m, we have
d

ds
sk/kðsLÞ
� �

¼ sk�1/k�1ðsLÞ: ð10Þ
Integration by parts on Rk(h) for k = 1,2,. . .,m, then gives the relation
RkðhÞ ¼ �hk/kðhLÞN ðk�1Þðt0Þ þ Rk�1ðhÞ; ð11Þ

where by the variation-of-constants formula
R0ðhÞ ¼
Z h

0

expððh� sÞLÞNðt0 þ sÞ ds ¼ � expðhLÞu0 þ uðt0 þ hÞ: ð12Þ
Thus we have
RmðhÞ ¼ �
Xm
k¼1

hk/kðhLÞN ðk�1Þðt0Þ � expðhLÞu0 þ uðt0 þ hÞ; ð13Þ
which proves the lemma. h

We see that the the remainder term Rm differs from a standard Taylor series of the nonlinear term by the

appearance of the /m function inside the integral rather than 1/m! in front. Since we are assuming that the

stiffness lies in the linear part, we give a simple bound on max06s6hi/m(sL)i. A standard bound for the ma-

trix exponential is given by the logarithmic norm: Let iÆi denote the Euclidean vector norm and also the

induced norm on Rn�n. Recall that the logarithmic norm l(A) (with respect to the Euclidean norm) of a ma-
trix A 2 Rn�n is given
lðAÞ ¼ sup
y2Rn

yTAy
yTy

¼ kmax

Aþ AT

2

� �
; ð14Þ
where kmax(Æ) denotes the largest eigenvalue of the given symmetric matrix. Note that the logarithmic norm

can take negative values, and is thus not a norm in the traditional sense. Consider the curve

y(t) = exp(tL)y0. For the derivative of its norm we have
d

dt
kyðtÞk ¼ yðtÞTLyðtÞ

kyðtÞk 6 lðLÞkyðtÞk; ð15Þ
and thus it follows that iy(t)i 6 etl(L)iy0i. Since this holds for every y0 we have
k expðtLÞk 6 etlðLÞ for t P 0: ð16Þ

Using this bound it now follows from (5) that
max
06s6h

k/mðsLÞk 6
1

m!
max
06s6h

k expðsLÞk

6
1

m!
max 1; ehlðLÞ

� �
: ð17Þ
Although this bound is not optimal with respect to sharpness, it follows that if the spectrum of the sym-

metric part of L is close to the left half of the complex plane, then the rate of convergence of the series
in Lemma 1.1 is comparable to the standard Taylor series expansion of the nonlinear term, and in any case

independent of iLi. The main idea we use for ETD schemes in this paper is to replace the nonlinear term in

(2) by a finite polynomial approximation, and then solve the resulting ODE exactly. It follows from Lemma
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1.1 that the expression for the error of such a method will include, in addition to derivatives of the nonlin-

ear term, only functions of L with small norm, and thus one would anticipate accurate methods.

As an illustration of the /k functions, we have in Fig. 1 to the left plotted the image of C� under the

maps exp, /1, /2 and /3. On the right, the equivalent images of the region
D2 ¼ fz 2 CjReðzÞ 6 1g ð18Þ

is shown and indicates that the bounds |/k(z)| 6 (1/k!)eRe(z) are not optimal with respect to sharpness.
2. IF, ETD and connections with commutator-free Lie group methods

In this section we introduce IF methods, ETD methods, and point out connections with a particular
application of the commutator-free Lie group methods.

2.1. Integrating factor

Consider the ODE (2) with u(t0) = u0. The integrating factor method [2,4,7,22] uses a smooth change of

variables in attempt to ameliorate the stiff part of the original equation. It can be described as follows:

Search for a v : R ! Rn such that for u(t) around t = t0 we have
uðt0 þ sÞ ¼ expðsLÞvðsÞ: ð19Þ

Differentiating this expression and substituting (2) we obtain the following ODE for v:
v0ðsÞ ¼ expð�sLÞNðexpðsLÞv; t0 þ sÞ; vð0Þ ¼ u0: ð20Þ

The idea is now to solve Eq. (20) with some explicit numerical method to obtain v1�v(h), and then obtain

the approximate solution u1 from (19). At first glance this transformation may not seem as good idea as the

ODE (20) seen isolated can be even more stiff than the original equation due to the minus in the exponen-

tial. However, all minuses cancel when the approximate solution is composed with (19) and thus this is not

a problem (see [22] for examples on implementation).

On the downside, there are mainly two problems with the IF methods described in the literature [2,4]: it

has large error coefficients for iLi� 1, and it does not preserve fixed points of the original ODE. The latter

means that if there exists an u0 such that
Lu0 þ Nðu0Þ ¼ 0; ð21Þ
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Fig. 1. The image of the functions exp, /1, /2 and /3 of D1 ¼ C� (left) and D2 ¼ fz 2 CjReðzÞ 6 1g (right).
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then IF methods will in general move away from u0. Although we have not run into problems due to lack of

preserving the fixed points of the true solution, it seems desirable for a numerical method to fulfill this prop-

erty with respect to capturing as much of the dynamics of the system as possible. In this paper we suggest

generalizations of the IF approach, and construct methods where both of these problems are taken care of.

2.2. Explicit ETD-methods

Consider the ODE (2). Let tj = t0 + jh denote time discretization points and suppose we have numerical

approximations un,un�1,. . .,un�k + 1 at the corresponding times. Moreover let pðsÞ ¼
Pk�1

j¼0 ðsj=j!Þpj be the

interpolation polynomial through the set of points {(tj,N(uj,tj)):j = n�k + 1,. . .,n} with p(0) = N(un,tn). Gi-

ven that the approximations uj are of order Pk, the polynomial p(s) is an approximation to

N(u(tn + s),tn + s) of order Pk � 1. Using the series of Lemma 1.1 it then follows that
unþ1 ¼ expðhLÞun þ
Xk
j¼1

hj/jðhLÞpj�1 ð22Þ
defines a kth order multistep method for Eq. (2). These are the so-called explicit ETD methods ([1,4,14] and

references therein). Similarly to the explicit Adams methods [8] (note that these ETD methods become the

Adams methods when the linear part is zero), the kth order ETD method (22) can be formulated explicitly

as done by Cox and Matthews [4], and earlier by Nørsett [20]:
unþ1 ¼ expðhLÞun þ h
Xk�1

j¼0

gjðhLÞrjNn; ð23Þ
where $jNn denotes the backward differences
r0Ni ¼ Nðui; tiÞ; rjþ1Ni ¼ rjN i �rjN i�1; ð24Þ

and the functions gj are given by the recurrence formula
xg0ðxÞ ¼ ex � 1; ð25Þ

xgjþ1ðxÞ þ 1 ¼ gjðxÞ þ
1

2
gj�1 þ

1

3
gj�1 þ � � � þ 1

jþ 1
g0ðxÞ: ð26Þ
In addition to this formula the authors of [4] also derive ETD methods with Runge–Kutta time stepping,
the so-called ETDRK methods. Before we discuss these methods we introduce a somewhat related class of

methods developed in [3], the commutator-free Lie group methods.
2.3. Lie group methods and ETDRK

Lie group methods [13] were originally designed for differential equations on manifolds in such a manner

that also the numerical solution would stay on the manifold. However, in this paper, the manifold is just Rn,

so staying on the manifold is not an issue. However, one can benefit from the diversity of these methods with
respect to choosing an action which in some sense resembles the true flow of the problem. In standard ex-

plicit methods the basic action is just to move along the tangent of our current point, i.e. along a straight

line. In Lie group methods, however, one can choose actions based on general flows, and for stiff problems

this can be utilized to take into account for the rapid changes in the vector field.

For ease of exposition, we will be dealing with matrix Lie groups and matrix Lie algebras only. Let

g � Rn�n denote a matrix Lie algebra, i.e. a set of matrices closed under linear combinations and matrix

commutators,
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½A;B� ¼ AB� BA: ð27Þ

We denote by G the matrix Lie group corresponding to g, which can be obtained by taking matrix expon-
entials of elements in g, and products of these. This group is closed under matrix products and matrix inver-

sion. Let M be a manifold, and Æ:G�M ! M an action of G on M, i.e.
g2 � ðg1 � yÞ ¼ ðg2g1Þ � y for all g1; g2 2 G; y 2 M: ð28Þ

Inapplications, the action isusually (at least in some representation) just amatrix–matrixormatrix–vectorprod-

uct. A Lie group action onM induces a product � : g�M ! TM (TM denotes the tangent bundle ofM) by
A � y ¼ d

dt

����
t¼0

expðtAÞ � y; ð29Þ
again usually matrix–matrix or matrix–vector multiplication in some representation. The main assumption

is that we can put our ODE in the form
y0ðtÞ ¼ AðyðtÞ; tÞ � y; yð0Þ ¼ y0; ð30Þ
where yðtÞ 2 M; A : M� R ! g and g is the Lie algebra corresponding to the Lie group G acting on M.

In the Runge–Kutta Munthe–Kaas (RKMK) methods [18], the idea is to search for a Z : R ! g, such

that the solution of (30) can be written y(t) = exp(Z(t)) Æ y0. Differentiating this expression leads to an

ODE for Z of the form
Z 0ðtÞ ¼ dexp�1
ZðtÞ AðexpðZðtÞÞ � y0; tÞð Þ; Zð0Þ ¼ 0: ð31Þ
The operator dexp�1
ZðtÞð�Þ : g ! g is an infinite sum of iterated commutators [13], and the usual approach is to

truncate it to desired order. Since the Lie algebra is a linear space, a numerical solution Z1 to (31) obtained

by a standard Runge–Kutta method, will reside in the Lie algebra. The numerical solution in g is then

mapped via the Lie group to a numerical solution on M.

A similar approach to solving equations on manifolds is the Crouch–Grossman methods [5,19] and their

generalizations, the commutator-free Lie group methods suggested by Celledoni et al. [3]. These methods do
not transform the ODE to the Lie algebra, but rather compose several exponentials. The general algorithm

for an explicit commutator-free Lie group method in the matrix setting can be given as follows:

Algorithm 2.1. (Commutator-free Lie group method)
uðrÞ ¼ exp
Pr�1

k¼1

akrJA
ðkÞ

� �
� � � exp

Pr�1

k¼1

akr1A
ðkÞ

� �
� un

AðrÞ ¼ hAðuðrÞ; tn þ crhÞ

9>=
>; r ¼ 1; 2; . . . ; s; ð32Þ

unþ1 ¼ exp
Xs
k¼1

bk
JA

ðkÞ

 !
� � � exp

Xs
k¼1

bk
1A

ðkÞ

 !
� un ð33Þ
In the algorithm the akri, the bk
i and the cr are real coefficients and s is the number of stages. The coeffi-

cients of the underlying Runge–Kutta method are given by ark ¼
P

ia
k
ri and bk ¼

P
ib

k
i . Due to the extra

freedom in the commutator-free Lie group methods (summing elements in the Lie algebra) compared to

the Crouch–Grossman methods, the authors in [3] were able to construct a fourth order method effectively

using only five exponentials. In comparison a fourth order Crouch–Grossman method requires 15 [19]. In

particular, we consider the fourth order method (CF4) given in [3] with the following Butcher-like tableau:
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ð34Þ
In addition to the representation of these methods in [3], we have included the c coefficients (the row sums).

This is of help in representing general ETDRK methods.

In [18] Munthe-Kaas suggested to use Lie group methods to solve stiff equations by using the affine ac-
tion on Rn,
ðM ; bÞ � u ¼ Muþ b; ð35Þ

where M 2 Rn�n is invertible and b 2 Rn. Pairs of the type (M,b) indeed form a Lie group. To make it clear

that this group and its action can be represented as a matrix group and matrix–vector multiplication,

respectively, consider the following matrix group G � Rðnþ1Þ�ðnþ1Þ,
G ¼
M b

0T 1

� �
: M 2 Rn�n with detðMÞ 6¼ 0; b 2 Rn

� �
; ð36Þ
where 0 denotes the n · 1 zero vector. Representing a point u 2 Rn by a point y 2 Rnþ1 such that yT = (uT 1),

it is clear that for A2G, the multiplication Ay gives the desired affine action (35). The matrix Lie algebra g

corresponding to G is simply given
g ¼
M b

0T 0

� �
: M 2 Rn�n ðarbitraryÞ; b 2 Rn

� �
: ð37Þ
Similarly to the action, a tangent vector to u may be represented by an A 2 g by Ay, where yT = (uT 1). For
ease of notation we write both elements of the Lie group and Lie algebra as pairs (M,b). In this notation

exp: g ! G is given
expðM ; bÞ ¼ ðexpðMÞ;/1ðMÞbÞ: ð38Þ
This can either be seen from the first two terms of the series of Lemma 1.1, or by computing the matrix

exponential of a matrix of the form (37).

Motivated by exponential integrators for stiff systems [11], the suggestion in [18] was to represent a stiff
ODE u 0(t) = f(u,t) as
u0ðtÞ ¼ ðJ ; f ðu; tÞ � JuÞ � u; uð0Þ ¼ u0; ð39Þ
and solve it using a Lie group integrator. Here J denotes some approximation to Df(u), where Df is the

Jacobian of f. In this paper we simply take J to be the linear term, and thus we represent the ODE (2) as
u0ðtÞ ¼ ðL;Nðu; tÞÞ � u; uð0Þ ¼ u0: ð40Þ
In this case a sufficient Lie algebra is the set of pairs (aL,b), where a 2 R and b 2 Rn. The corresponding Lie

group consists of pairs of the form (exp(aL),b). The RKMKmethod based on forward Euler applied to (40)

is now given
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unþ1 ¼ expðhðL;Nðun; tnÞÞÞ � un ¼ expðhLÞun þ h/1ðhLÞNðun; tnÞ; ð41Þ

which coincides with ETD1. For RKMK methods of order P3, one needs to evaluate commutators of ele-
ments of the Lie algebra, which in this setting involves products of the type Lb. Since L represents the stiff

term, this is not desirable since one typically has iLi large compared to i/k(L)i, k = 0,1. Numerical exper-

iments [16,21,15] also shows that RKMK methods in this form is not well suited for stiff equations, unless

the dexp�1 function is computed with caution. To avoid commutators, one option is thus to use the com-

mutator-free Lie group methods of Celledoni et al. as presented in one of their examples in [3]. To see the

resemblance with the ETDRK4 method of Cox and Matthews [4], we explicitly write out the algorithm of

CF4 applied to Eq. (40).
Algorithm 2.2. (CF4)
uð1Þ ¼ un; N ð1Þ ¼ Nðuð1Þ; t0Þ;
uð2Þ ¼ expðh

2
LÞun þ h

2
/1ðh2LÞN

ð1Þ; N ð2Þ ¼ Nðuð2Þ; t0 þ h
2
Þ;

uð3Þ ¼ expðh
2
LÞun þ h

2
/1ðh2LÞN

ð2Þ; N ð3Þ ¼ Nðuð3Þ; t0 þ h
2
Þ;

uð4Þ ¼ expðh
2
LÞuð2Þ þ h/1ðh2 LÞð� 1

2
N ð1Þ þ N ð3ÞÞ; N ð4Þ ¼ Nðuð4Þ; t0 þ hÞ;

ð42Þ

û ¼ expðh
2
LÞun þ h/1ðh2 LÞð14N

ð1Þ þ 1
6
N ð2Þ þ 1

6
N ð3Þ � 1

12
N ð4ÞÞ;

unþ1 ¼ expðh
2
LÞûþ h/1ðh2 LÞð� 1

12
N ð1Þ þ 1

6
N ð2Þ þ 1

6
N ð3Þ þ 1

4
N ð4ÞÞ:

ð43Þ
Note that the exponential in the first substage in the fourth internal stage has already been computed in

the second internal stage (u(2)), which simplifies the algorithm. It is interesting to see that the internal stages

(42) are exactly the same as the internal stages of the method ETDRK4 by Cox and Matthews. We have

found that the ETDRK4 method can be obtained from (43) by considering a continuous extension of the

contribution from the nonlinear part. We start by introducing the auxiliary differential equation
v0ðtÞ ¼ NðuðtÞ; tÞ; vðt0Þ ¼ u0; ð44Þ
where u(t) is the solution of the original ODE (2). An approximation v1 � v(t0 + h) is obtained by setting L

to zero in the final stage (43), that is (keeping N(i),i = 1, 2, 3, 4 fixed)
v1 ¼ u0 þ h
1

6
N ð1Þ þ 1

3
N ð2Þ þ 1

3
N ð3Þ þ 1

6
N ð4Þ

� �
: ð45Þ
Note that the coefficients appearing in this expression are the bi-values of the underlying classical Runge–

Kutta method. In order to find a polynomial approximation for v(t) (and thus for N(u(t),t)), we use the

techniques of continuous Runge–Kutta methods [8]. That is, we wish to find a continuous approximate solu-

tion ~vðt0 þ hhÞ to (44), such that ~vðt0 þ hÞ ¼ v1 and for 0 < h < 1 we want ~vðt0 þ hhÞ to be an approximation

to v(t0 + hh) of as high order as possible. We represent the approximation as
~vðt0 þ hhÞ ¼ u0 þ h

P4

i¼1biðhÞN ðiÞ, where the N(i) are the (fixed) vectors from (42). The polynomials bi(h)
can be found to satisfy the Runge–Kutta order conditions of third order:
b1 þ b2 þ b3 þ b4 ¼ h; 1
2
b2 þ 1

2
b3 þ b4 ¼ h2

2
;

1
4
b2 þ 1

4
b3 þ b4 ¼ h3

3
; 1

4
b3 þ 1

2
b4 ¼ h3

6
:

ð46Þ
The solution of this system is given by b1(h) = (2/3)h3 � (3/2)h2 + h, b2(h) = b3(h) = -(2/3)h3 + h2 and

b4(h) = (2/3)h3 � (1/2)h2. This suggest the following approximation for N(u(t0 + s),t0 + s):
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Nðuðt0 þ sÞ; t0 þ sÞ � d

ds
~vðt0 þ sÞ ¼

X4
i¼1

b0i
s
h

� 	
N ðiÞ: ð47Þ
Having a polynomial approximation for the nonlinear part, we are by Lemma 1.1 able to solve the follow-

ing ODE exactly:
d

ds
~uðt0 þ sÞ ¼ L~uðt0 þ sÞ þ

X4
i¼1

b0ið
s
h
ÞN ðiÞ; uðt0Þ ¼ u0: ð48Þ
Its solution at s = h is given by
u1 ¼ expðhLÞu0 þ h ð4/3 � 3/2 þ /1ÞN ð1Þ þ ð�4/3 þ 2/2ÞðN ð2Þ þ N ð3ÞÞ þ ð4/3 � /2ÞN ð4Þ� �
; ð49Þ
where /i is short for /i(hL). This is exactly the method ETDRK4 given in [4]. We propose to represent this

method in the Butcher-like tableau
ð50Þ
We do not claim that this method of construction of the ETDRK-schemes from the commutator-free

Lie group methods always gives the right order, in fact one would think that since the continuous

approximation is only of order three, the resulting method would also be of order three; however,

all the third order cases we tested turned out to give the desired order. Cox and Matthews describe

that their first attempt to construct a fourth order ETDRK method in the same fashion as their lower

order methods failed. This is illustrated by the need for including one extra substage in the internal

stages for the CF4-method to obtain a fourth order method. However, we found that by including
one extra term in the series of Lemma 1.1 (that is the /2 function), we were able to construct a fourth

order ETDRK method where none of the internal stages are divided into substages. We represent the

method as follows:
ð51Þ
In fact this method is more accurate than ETDRK4, and it also seems to have slightly better stability prop-

erties. We denote this method by ETDRK4-B.
3. A generalized IF approach

Given the ODE
u0ðtÞ ¼ F ðu; tÞ ¼ Luþ Nðu; tÞ; uðt0Þ ¼ u0: ð52Þ
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The standard integrating factor method uses the fact that we can solve a simpler ODE exactly, and that this

simpler ODE has more or less the same stiffness properties as the original equation (52). Generalizing this

approach the idea is to find some modified vector field ~F with ~F ðu0; 0Þ ¼ F ðu0; t0Þ, which approximates F

around u0 and hopefully captures key features of F. In addition we require that we can solve the ODE
~u0ðsÞ ¼ ~F ð~uðsÞ; sÞ; ~uð0Þ ¼ ~u0; ð53Þ

exactly or easily to a given order of accuracy. Let /s;~F : Rn ! Rn denote the flow operator, i.e.
~uðsÞ ¼ /s;~F ð~u0Þ is the solution of (53). Furthermore, let D/s;~F denote its Jacobian. We wish to represent

the solution of (52) locally by a v(s) with v(0) = u0 such that
uðt0 þ sÞ ¼ /s;~F ðvðsÞÞ: ð54Þ
Differentiating this relation with respect to s we obtain
F ðu; t0 þ sÞ ¼ ~F ð/s;~F ðvÞ; sÞ þ D/s;~F ðvÞv0ðsÞ; ð55Þ
and thus
v0ðsÞ ¼ D/s;~F ðvÞ
� ��1ðF ð/s;~F ðvÞ; t0 þ sÞ � ~F ð/s;~F ðvÞ; sÞÞ; vð0Þ ¼ u0: ð56Þ
It is easily seen that by choosing ~F such that ~F ðuÞ ¼ Lu one obtains the standard IF-method. More gener-

ally one can consider polynomial approximations to the nonlinear term around some point u0. That is to

find some finite polynomial c(s) such that
cðsÞ � Nðuðt0 þ sÞ; t0 þ sÞ: ð57Þ

The flow of the vector field ~F ðu; sÞ ¼ Luþ cðsÞ is obtained from the series of Lemma 1.1, and by observing

that D/s;~F ðvÞ ¼ expðsLÞ, the equation for v in (56) becomes simply
v0ðsÞ ¼ expð�sLÞðNðuðt0 þ sÞ; t0 þ sÞ � cðsÞÞ; vð0Þ ¼ u0; ð58Þ

with uðt0 þ sÞ ¼ /s;~F ðvðsÞÞ.

Assume we have approximate solutions u1,. . .,un at the corresponding times tj = t0 + jh. The polynomial

c(s) approximating the nonlinear term around un can be chosen as the interpolating polynomial through the
points (N(uj,tj),tj), j = n � k + 1,. . .,n for some k 6 n. Denoting Nj = N(uj,tj), the first few possible choices

for c are
c0ðsÞ ¼ Nn;

c1ðsÞ ¼ Nn þ s
Nn � Nn�1

h

� �
;

c2ðsÞ ¼ Nn þ s
1
2
Nn�2 � 2Nn�1 þ 3

2
Nn

h

� �
þ s2

2

Nn�2 � 2Nn�1 þ Nn

h2

� �
:

ð59Þ
The approach is now the same as in the standard IF-method. Use an explicit method for the ODE (58) to

obtain v1 � v(h), and then set unþ1 ¼ /h;~F ðv1Þ. Also in this case minuses in the exponential cancel, and do

not cause problems. As we shall se in the numerical experiments, increasing the order of the interpolating

polynomial c(s) leads to increasing accuracy in the resulting methods. However, there seems to be a payoff

with decreasing stability, and we will conclude that the generalized IF-methods are best suited for equations

where the spectrum of the linear operator lies on or close to the real negative axis. It is worth noting that

these methods indeed preserve the fixed points of the original equation. The approach we have proposed
here is very similar to the one of Maday et al. [17] all though they do not discuss our particular setting.

Their approach is more general in the sense that they compute the action of ðD/s;~F ðvÞÞ
�1

by a numerical

method rather than exact. We adopt a similar notation as in [17] for the labeling of our methods, i.e.
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the three methods corresponding to c0, c1 and c2 in (59), we call ETD1/RK4, ETD2/RK4 and ETD3/RK4,

respectively. This notation is justified by the fact that the flow of the vector field ~F ¼ Luþ ck�1ðsÞ is equal to
the ETDk-method for s = h, and that the transformed equation (58) is integratied by RK4.

As an example we present the overall algorithm for the method resulting from the interpolating polyno-

mial c1(s) in (59) using the classical fourth order Runge–Kutta method on (58). Note that the flow of the
vector field ~F ðvÞ ¼ Lvþ c1ðsÞ is given
/s;~F ðvÞ ¼ expðsLÞvþ s/1ðsLÞNn þ
s2

h
/2ðsLÞðNn � Nn�1Þ; ð60Þ
where Nn = N(un,tn) and Nn�1 = N(un�1,tn�1).

Algorithm 3.1. (ETD2/RK4)
a ¼ /h
2
;~F ðunÞ; b ¼ /h;~F ðunÞ; Na ¼ Nða; tn þ h

2
Þ;

c ¼ aþ h
2
ðNa � 3

2
Nn þ 1

2
Nn�1Þ; Nc ¼ Nðc; tn þ h

2
Þ;

d ¼ bþ h expðh
2
LÞðNc � 3

2
Nn þ 1

2
Nn�1Þ; Nd ¼ Nðd; tn þ hÞ;

ð61Þ

unþ1 ¼ bþ h
3
exp

h
2
L

� �
ðNa þ Nc � 3Nn þ Nn�1Þ þ

h
6
ðNd � 2Nn þ Nn�1Þ ð62Þ
Since the underlying method for solving the transformed equation (58) has order four, we are guaranteed

(given sufficient smoothness of the problem) that the resulting method has at least order four. In addition

we were able to show that for ETDk/RK4, k = 1, 2, 3 the local error for a particular scalar test equation is

Oðh5Þ, and thus these methods are indeed of order four.
4. Stability

In this section we study the stability regions of the schemes discussed in this paper. In this and the next

section we consider the seven methods ETDRK4 (50), ETDRK4-B (51), CF4 (43), IF4 (the standard IF-

method based on RK4), and the three methods ETD1/RK4, ETD2/RK4 and ETD3/RK4 described in

the previous section. Rather than considering the scalar test equation
_u ¼ ku; ð63Þ
we adopt the approach in [1,4] (and references therein), that is to consider the test equation
_u ¼ cuþ ku; ð64Þ

where c and k are scalars. We note that this approach only can give an indication of stability, since in gen-

eral one can not linearize both terms simultaneously. When applying our methods to the Eq. (64), we may

treat cu as the linear term and ku as the nonlinear. For a fixed value of c (or rather hc where h is the step
size), we can obtain a stability region for hk as in the standard case (see [9]). For a fixed hc, our approach

was simply to apply the method to Eq. (64) (with u(0) = 1) for (hk)i,j a set of grid points in C. Taking the

absolute value of the resulting set of approximate solutions (u1)i,j, we obtained the boundary of the region

using the function contour in MATLABATLAB.

To obtain any information from the stability regions, we need to consider various values of ch. Moreover

if L is a matrix representing the linear term of our equation, we would like to plot a region representing the

whole spectrum of L. We propose to choose some subset U 2 C, and to plot the intersection of all regions

with ch2U. For applications we consider two particular choices of U:
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� ch 2 R�: By choosing various values of ch on the negative real axis, we obtained several regions as seen

in Fig. 2. The ETD1/RK4 method reduces to RK4 when the linear term is zero, and one recognizes the

stability region of RK4 which is also the intersection since the regions increase with increasing ch. For

the other two methods the regions increase at first, but then split into two and decrease for larger ch. As

ch!�1 the regions converge as seen on the plot. The regions of the methods ETDRK4, ETDRK4-B
and CF4 have the same intersection as ETD1/RK4 and are not plotted (they also reduce to RK4 when

the linear term is zero).

� Re(ch) = 0: This situation is more demanding, and in Fig. 3 we have plotted regions for values of ch in

the interval [�2pi,2pi]. The method with the largest intersection is ETDRK4-B, while the methods

ETDRK4 and CF4 have smaller intersections but still include an interval of the imaginary axis. The

intersections of the generalized IF methods touch the imaginary axis only at a point, which suggests that

they will not work very well for the KdV-equation (Section 5.3). The reason for this is that the eigen-
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values of the linearization of the nonlinear part lie on the imaginary axis. We note that these regions only

give an indication of the stability of the methods. In the numerical experiments, the spectrum of the lin-

ear operators is one to two orders of magnitude greater than the interval we considered here, but still it

seems to be giving the right picture.
5. Numerical experiments

In this section we consider three numerical examples for comparisons of the methods discussed in this

paper. We will also see that the properties indicated by the stability analysis agree with the results in the

experiments.

For stable computations of the /i functions (6) (they suffer from cancellation errors for values close to
zero), we use the approach of Kassam and Trefethen [14]. For z close to zero they propose to compute f(z)

by approximating the integral
f ðzÞ ¼ 1

2pi

Z
C

f ðtÞ
t � z

dt; ð65Þ
over a contour C well separated from 0. This approach generalizes to a matrix L by
f ðLÞ ¼ 1

2pi

Z
C
f ðtÞðtI � LÞ�1

dt: ð66Þ
The approach is to approximate these integrals along the contour by the trapezoidal rule. This method is
easy to implement and gives stable results. However, if the matrix L is full and large, the computations be-

come expensive, and one might have to consider other methods for computing the matrix functions. One

approach including transforming L to upper triangular and making use of a block form of Parlett�s algo-
rithm is described in [6]. If the matrix or operator L is still to big one may need to consider Krylov methods

[10,11], but in this case one needs to approximate the function applied to a vector in every step. Still this can

be effective if one is able to construct methods with a minimum number of function evaluations as in the

exponential integrators of [11].
5.1. The Kuramoto–Sivashinsky equation

We consider the following PDE with initial data borrowed from [14]:
ut ¼ �uux � uxx � uxxxx; x 2 ½0; 32p�; ð67Þ

uðx; 0Þ ¼ cos
x
16

� 	
1þ sin

x
16

� 	� 	
: ð68Þ
We use a 128-point Fourier spectral discretization and integrate from t = 0 to t = 65.

Since the eigenvalues of the linear operator of this equation are distributed on the real axis to the left of

0.25, we expect all methods to work reasonably well considering the stability analysis. With periodic bound-
ary conditions the system becomes diagonal in Fourier space, and the /i functions are just stored as vectors.

In Fig. 4 we have plotted the results using the seven different methods. We see that the generalized IF meth-

od ETD3/RK4 is the most efficient all though it fails to produce a result at the largest step size. The

improvement over the standard IF method is about 104. Note also that this method together with

ETD2/RK4 appears to have higher order than the other methods, all though they are only fourth order

in general. We also observe that the ETDRK4-B performs better than ETDRK4.
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Fig. 4. Step size versus error (left), and cpu time versus error (right), for the Kuramoto–Sivashinsky equation.
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5.2. The Allen–Cahn equation

We consider an other example from [14] which uses a 50-point Chebyshev spectral method.
ut ¼ �uxx þ u� u3; x 2 ½�1; 1�; ð69Þ

with � = 0.01 and initial conditions
uðx; 0Þ ¼ 0:53xþ 0:47 sinð�1:5pxÞ; uð�1; tÞ ¼ �1; uð1; tÞ ¼ 1: ð70Þ

We apply the MATLABATLAB function cheb from [22] for generation of the grid and the differentiation matrix.
Note that the differentiation matrix in this example is full, and thus the function evaluations involved re-

quire much more work than in the previous example. Keeping in mind that these matrix functions need

only be computed once the computational cost per step approaches (N2) as the number of steps increase.

This is seen in Fig. 5 and for few steps the standard IF method is the most efficient. For higher accuracy the

ETD2/IF4 and ETD3/IF4 perform best.
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5.3. The Korteweg de Vries equation

We consider the equation
ut ¼ �uxxx � uux; x 2 ½�p; p�; ð71Þ

with initial conditions [4]
uðx; 0Þ ¼ 3C=cosh2ð
ffiffiffiffi
C

p
x=2Þ; ð72Þ
with C = 625. The solution of this system is periodic with period 2p/C and is given u(x,t) = u(x � Ct,0). We

use a 256-point Fourier spectral discretization and run the methods for one period. As seen in Fig. 6 the IF

method and ETD1/RK4 perform quite well, but the other generalized IF methods break down at quite

small step sizes. This is in good agreement with the stability regions in Fig. 3. The methods ETDRK,

ETDRK-B and CF4 all perform very well and produce smooth solutions. As a comparison of these meth-

ods, in Fig. 7, we plotted the third space derivative of the numerical solutions after one period obtained

with time step h = 10�5. Although the difference is not big, the plot agrees well with the regions in Fig. 3.
6. Concluding remarks

We have treated various numerical methods for solving semi-discretized PDEs, all having in common

that they treat the linear term in an exact manner. Such methods include IF, ETD and a special case of
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the commutator-free Lie group methods. In this paper we have suggested generalizations to the IF ap-

proach, and in particular obtained new methods with several orders in magnitude improvement in accu-

racy over the standard IF method. We have pointed out a connection between the ETDRK4-method

proposed by Cox and Matthews with the CF4-method of Celledoni et al. We also constructed a new

fourth order ETDRK method where the numerical experiments indicated that this method was more
accurate than the one given in [4]. To our knowledge there does not exist any order theory for the

ETDRK methods, which would be useful if one wants to construct methods for special purposes. Accu-

racy, stability and minimizing the number of function evaluations are all properties one would like to

take into account both for ETDRK and IF related methods. However, after this paper first was sub-

mitted, a convergence analysis of collocation type ETD methods has appeared in [12]. We are not

aware of much work done on general integrating factor methods besides [17]. In this paper we have

pointed out one way of constructing schemes, and it is an interesting question whether this methodol-

ogy applies also to other applications.
Acknowledgments

I thank Hans Munthe-Kaas and Brynjulf Owren for useful discussions, and Arieh Iserles for pointing

out Ref. [20]. Also I thank the anonymous referees for valuable comments and suggestions improving

the readability of the paper.
References

[1] G. Beyklin, J.M. Keiser, L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput.

Phys. 147 (1998) 362–387.

[2] J.P. Boyd, Chebyshev and Fourier Spectral Methods, Dover, New York, 2001, Available from: <http://www-per-

sonal.engin.umich.edu/~jpboyd> .

[3] E. Celledoni, A. Martinsen, B. Owren, Commutator-free Lie group methods, FGCS 19 (3) (2003) 341–352.

[4] S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002) 430–455.

[5] P.E. Crouch, R. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci. 3 (1993) 1–33.

[6] P. Davies, N. Higham, A Schur–Parlett algorithm for computing matrix functions, SIAM J. Matrix Anal. Appl. 25 (2) (2003) 464–

485.

[7] B. Fornberg, T.A. Driscoll, A fast spectral algorithm for nonlinear wave equations with linear dispersion, J. Comput. Phys. 155

(1999) 456–467.

[8] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, second ed.Springer Series in

Computational Mathematics, vol. 8, Springer, Berlin, 1993.

[9] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic ProblemsSpringer Series in

Computational Mathematics, vol. 14, Springer, Berlin, 1996.

[10] M. Hochbruck, C.h. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Sci. Comput. 34

(5) (1997) 1911–1925.

[11] M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Numer. Anal.

19 (5) (1998) 1552–1574.

[12] M. Hochbruck, A. Ostermann, Exponential Runge–Kutta methods for parabolic problems, Appl. Numer. Math. (to appear).

[13] A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. (2000) 215–236.

[14] A.K. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput. (to appear).

[15] S. Krogstad, RKMK-related methods for stiff nonlinear PDEs, Report, University of Bergen, 2003.

[16] E. Lodden, Geometric integration of the heat equation, Masters Thesis, University of Bergen, 2000.

[17] Y. Maday, A.T. Patera, E.M. Rønquist, An operator-integration-factor splitting method for time-dependent problems:

application to incompressible fluid flow, J. Sci. Comp. 5 (4) (1990) 263–292.

[18] H. Munthe-Kaas, High order Runge–Kutta methods on manifolds, J. Appl. Numer. Math. 29 (1999) 115–127.

[19] B. Owren, A. Marthinsen, Runge–Kutta methods adapted to manifolds and based on rigid frames, BIT 39 (1) (1999) 116–142.

http://www-personal.engin.umich.edu/~jpboyd
http://www-personal.engin.umich.edu/~jpboyd


88 S. Krogstad / Journal of Computational Physics 203 (2005) 72–88
[20] S. Nørsett, An A-stable modification of the Adams–Bashforth methodsLecture Notes in Mathematics, vol. 109, Springer, Berlin,

1969, pp. 214–219.

[21] A. Suslowicz, Application of numerical Lie group integrators to parabolic PDE�s, Technical Report No. 013, University of

Bergen, 2001.

[22] L.N. Trefethen, Spectral methods in MATLABATLAB, SIAM, Philadelphia, 2000.


	Generalized integrating factor methods for stiff PDEs
	Introduction
	IF, ETD and connections with commutator-free Lie group methods
	Integrating factor
	Explicit ETD-methods
	Lie group methods and ETDRK

	A generalized IF approach
	Stability
	Numerical experiments
	The Kuramoto ndash Sivashinsky equation
	The Allen ndash Cahn equation
	The Korteweg de Vries equation

	Concluding remarks
	Acknowledgments
	References


